Computer Graphics

4 - Transformation 2

Yoonsang Lee Spring 2022

Question from Last Lecture: Rigid Transformation

• Rotation + Translation

 $T(\mathbf{v}) = R\mathbf{v} + \mathbf{u}$, where R is a rotation matrix.

Preserves distances between all points Preserves cross product for all vectors Let's say $g : \mathbb{R}^3 \to \mathbb{R}^3$ is a rigid transform map, then $\|g(u) - g(v)\| = \|u - v\|, \forall u, v \in \mathbb{R}^3$ $g(u) \times g(v) = g(u \times v), \forall u, v \in \mathbb{R}^3$ |v| = (1,3,1)g(v) = (2, -1, 0)7 reflection case

Topics Covered

- 3D Affine Transformation
- OpenGL Transformation Functions
 - OpenGL "Current" Transformation Matrix
 - OpenGL Transformation Functions
 - Composing Transformations using OpenGL Functions
- Fundamental Idea of Transformation
- Affine Space & Coordinate-Free Concepts

3D Affine Transformation

PointRepresentationinCartesian&HomogeneousCoordinateSystem

–	•	
	Cartesian coordinate system	Homogeneous coordinate system
A 2D point is represented as	$\begin{bmatrix} p_x \\ p_y \end{bmatrix}$	$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$
A 3D point is represented as	$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$	$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$

Review of Linear Transform in 2D

• Linear transformation in **2D** can be represented as matrix multiplication of ...

2x2 matrix or (in Cartesian coordinates)

3x3 matrix (in homogeneous coordinates)

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

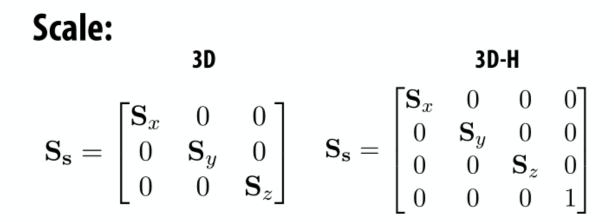
 $\begin{bmatrix} m_{11} & m_{12} & 0 \\ m_{21} & m_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$

Linear Transformation in 3D

• Linear transformation in **3D** can be represented as matrix multiplication of ...

3x3 matrix (in Cartesian coordinates)					4x4 matrix (in homogeneous coordinates)						
$\begin{bmatrix} m_{11} \\ m_{21} \\ m_{31} \end{bmatrix}$	$m_{12} \ m_{22} \ m_{32}$	$m_{13} \\ m_{23} \\ m_{33}$	$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$		$egin{array}{c} m_{11} \ m_{21} \ m_{31} \ 0 \end{array}$	$m_{12} \ m_{22} \ m_{32} \ 0$	$m_{13} \ m_{23} \ m_{33} \ 0$	0 0 0 1	$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$		

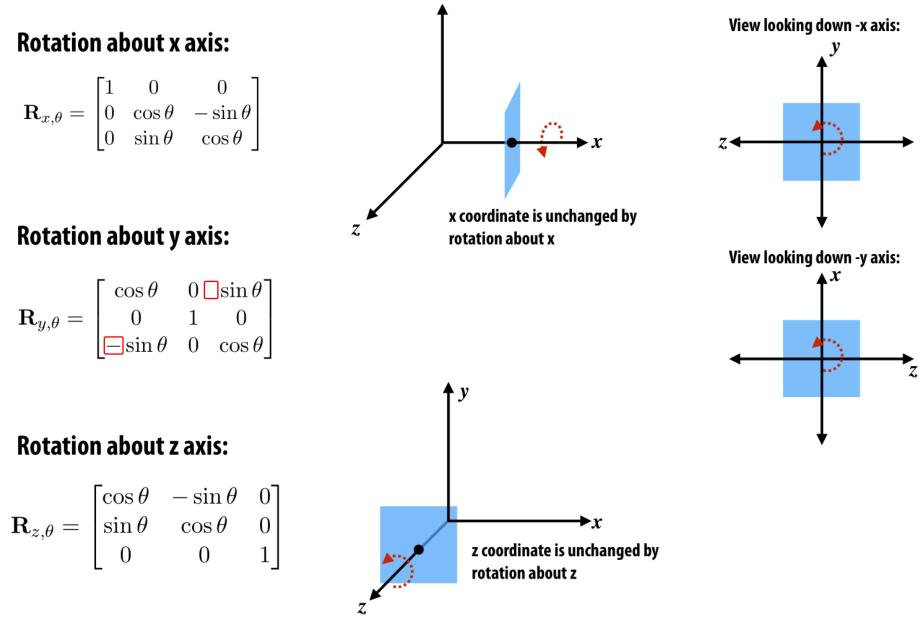
Linear Transformation in 3D



Shear (in x, based on y, z position):

$$\mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Linear Transformation in 3D



Review of Translation in 2D

• Translation in **2D** can be represented as ...

Vector addition (in Cartesian coordinates) Matrix multiplication of **3x3 matrix** (in homogeneous coordinates)

$$\begin{bmatrix} p_x \\ p_y \end{bmatrix} + \begin{bmatrix} u_x \\ u_y \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & u_x \\ 0 & 1 & u_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

Translation in 3D

• Translation in **3D** can be represented as ...

Vector addition (in Cartesian coordinates)

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} + \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$

Matrix multiplication of 4x4 matrix (in homogeneous coordinates) $\begin{bmatrix} 1 & 0 & 0 & u_x \\ 0 & 1 & 0 & u_y \\ 0 & 0 & 1 & u_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$

Review of Affine Transformation in 2D

• In homogeneous coordinates, **2D** affine transformation can be represented as multiplication of **3x3 matrix**:

linear part
$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ 0 & 0 & 1 \end{bmatrix}$$
 translational part

Affine Transformation in 3D

• In homogeneous coordinates, **3D** affine transformation can be represented as multiplication of **4x4 matrix**:

[Practice] 3D Transformations

```
import glfw
from OpenGL.GL import *
from OpenGL.GLU import *
import numpy as np
def render(M):
    # enable depth test (we'll see details
later)
    glClear (GL COLOR BUFFER BIT |
GL DEPTH BUFFER BIT)
    glEnable (GL DEPTH TEST)
    glLoadIdentity()
    # use orthogonal projection (we'll see
details later)
    glOrtho(-1,1, -1,1, -1,1)
    # rotate "camera" position to see this
3D space better (we'll see details later)
    t = glfw.get time()
    gluLookAt(.1*np.sin(t),.1,
.1*np.cos(t), 0,0,0, 0,1,0)
```

```
# draw coordinate system: x in red,
y in green, z in blue
    glBegin(GL LINES)
    qlColor3ub(255, 0, 0)
    qlVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([1.,0.,0.]))
    qlColor3ub(0, 255, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([0.,1.,0.]))
    qlColor3ub(0, 0, 255)
    glVertex3fv(np.array([0.,0.,0]))
    glVertex3fv(np.array([0.,0.,1.]))
    qlEnd()
    # draw triangle - p'=Mp
    glBegin (GL TRIANGLES)
    glColor3ub(255, 255, 255)
    glVertex3fv((M @
np.array([.0,.5,0.,1.]))[:-1])
    glVertex3fv((M @
np.array([.0,.0,0.,1.]))[:-1])
    glVertex3fv((M @
np.array([.5,.0,0.,1.]))[:-1])
    qlEnd()
```

```
def main():
    if not glfw.init():
        return
    window = glfw.create_window(640,640,
"3D Trans", None,None)
    if not window:
        glfw.terminate()
        return
        glfw.make_context_current(window)
        glfw.swap_interval(1)
```

while not

```
glfw.window_should_close(window):
     glfw.poll_events()
```

```
# rotate -60 deg about x axis
th = np.radians(-60)
R = np.array([[1.,0.,0.,0.],
    [0., np.cos(th), -np.sin(th),0.],
    [0., np.sin(th), np.cos(th),0.],
        [0.,0.,0.,1.]])
# translate by (.4, 0., .2)
T = np.array([[1.,0.,0.,.4],
        [0.,1.,0.,0.],
        [0.,0.,0.,1.]])
```

```
render(R) # p'=Rp
# render(T) # p'=Tp
# render(T @ R) # p'=TRp
# render(R @ T) # p'=RTp
glfw.swap_buffers(window)
glfw.terminate()

if ______ == "______main___":
    main()
```

[Practice] Tips: Use Slicing

• You can use **slicing** for cleaner code (the behavior is the same as the previous page)

```
# ...
# rotate 60 deg about x axis
th = np.radians(-60)
R = np.identity(4)
R[:3,:3] = [[1.,0.,0.]],
             [0., np.cos(th), -np.sin(th)],
             [0., np.sin(th), np.cos(th)]]
\# translate by (.4, 0., .2)
T = np.identity(4)
T[:3,3] = [.4, 0., .2]
# . . .
```

Quiz #1

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

OpenGL Transformation Functions

OpenGL "Current" Transformation Matrix

- OpenGL is a "state machine".
 - If you set a value for a state, it remains in effect until you change it.
 - ex1) current color
 - ex2) current transformation matrix

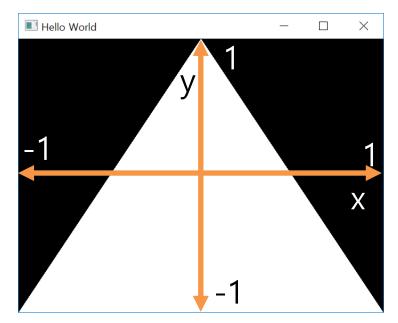
• An OpenGL context keeps the "current" transformation matrix somewhere in the memory.

OpenGL "Current" Transformation Matrix

- OpenGL **always** draws an object with the **current transformation matrix**.
- Let's say **p** is a vertex position of an object,
- and **C** is the current transformation matrix,
- If you set the vertex position using glVertex3fv(**p**),
- OpenGL will draw the vertex at the position of **Cp**

OpenGL "Current" Transformation Matrix

- Except today's practice code (which use glOrtho() and gluLookAt()), the current transformation matrix we've used so far is the **identity matrix**,
- which has been set by **glLoadIdentity**() replace the current matrix with the identity matrix.
- If the current transformation matrix is the **identity**, all objects are drawn in the Normalized Device Coordinate (**NDC**) space.



OpenGL Transformation Functions

- OpenGL provides a number of functions *to manipulate the current transformation matrix*.
- At the beginning of each rendering iteration, you have to set the current matrix to the identity matrix with **glLoadIdentity**().
- Then you can manipulate the current matrix with following functions:
- Scale, rotate, translate with parameters
 - glScale*()
 - glRotate*()
 - glTranslate*()
 - OpenGL doesn't provide functions like glShear*() and glReflect*()
- Direct manipulation of the current matrix
 - glMultMatrix*()

```
import glfw
from OpenGL.GL import *
from OpenGL.GLU import *
import numpy as np
```

gCamAng = 0.

```
def render(camAng):
    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
    glEnable(GL_DEPTH_TEST)
```

```
# set the current matrix to the identity matrix
glLoadIdentity()
```

```
# use orthogonal projection (multiply the current
matrix by "projection" matrix - we'll see details
later)
```

```
glOrtho(-1,1, -1,1, -1,1)
```

```
# rotate "camera" position (multiply the current
matrix by "camera" matrix - we'll see details later)
gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng),
0,0,0, 0,1,0)
```

```
# draw coordinates
glBegin(GL_LINES)
glColor3ub(255, 0, 0)
glVertex3fv(np.array([0.,0.,0.]))
glVertex3fv(np.array([1.,0.,0.]))
glColor3ub(0, 255, 0)
glVertex3fv(np.array([0.,0.,0.]))
glVertex3fv(np.array([0.,1.,0.]))
glColor3ub(0, 0, 255)
glVertex3fv(np.array([0.,0.,0]))
glVertex3fv(np.array([0.,0.,0]))
glVertex3fv(np.array([0.,0.,1.]))
glEnd()
```

[Practice] OpenGL Trans. Functions

```
def key callback (window, key, scancode, action,
mods):
    global gCamAng
    # rotate the camera when 1 or 3 key is pressed
or repeated
    if action==glfw.PRESS or action==glfw.REPEAT:
        if key==glfw.KEY 1:
            gCamAng += np.radians(-10)
        elif key==glfw.KEY 3:
            gCamAng += np.radians(10)
def main():
    if not glfw.init():
        return
    window = glfw.create window(640,640, 'OpenGL
Trans. Functions', None, None)
    if not window:
        glfw.terminate()
        return
    glfw.make context current (window)
    glfw.set key callback (window, key callback)
    while not glfw.window should close(window):
        glfw.poll events()
        render(gCamAng)
        glfw.swap buffers(window)
    glfw.terminate()
if name == " main ":
    main()
```

[Practice] OpenGL Trans. Functions

```
def drawTriangleTransformedBy(M):
    # p1=(0,.5,0), p2=(0,0,0), p3=(.5,0,0)
    glBegin(GL_TRIANGLES)
    glVertex3fv((M @ np.array([.0,.5,0.,1.]))[:-1])
    glVertex3fv((M @ np.array([.0,.0,0.,1.]))[:-1])
    glVertex3fv((M @ np.array([.5,.0,0.,1.]))[:-1])
    glEnd()
```

```
def drawTriangle():
    # p1=(0,.5,0), p2=(0,0,0), p3=(.5,0,0)
```

```
# pi=(0,.5,0), p2=(0,0,0), p3=(.5,0,0)
glBegin(GL_TRIANGLES)
glVertex3fv(np.array([.0,.5,0.]))
glVertex3fv(np.array([.0,.0,0.]))
glVertex3fv(np.array([.5,.0,0.]))
glEnd()
```

glScale*()

• glScale*(*x*, *y*, *z*) - **multiply** the current matrix by a scaling matrix

-x, y, z : scale factors along the x, y, and z axes

- Let's call the current matrix C
- Calling glScale*(*x*, *y*, *z*) will update the current matrix as follows:
- $C \leftarrow CS$ (right-multiplication by S)

$$=\begin{pmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

S

[Practice] glScale*()

```
def render():
    # ...
    # edit here
    glColor3ub(255, 255, 255)
    \# 1) & 2) all draw a triangle with the same transformation
    # (scale by [2., .5, 0.]) - p'= CSp
    # (C: current transformation matrix at this point)
    # 1)
    glScalef(2., .5, 0.)
    drawTriangle()
    # 2)
    \# S = np.identity(4)
    \# S[0,0] = 2.
    \# S[1,1] = .5
    \# S[2,2] = 0.
    # drawTriangleTransformedBy(S)
```

glRotate*()

- glRotate*(*angle*, *x*, *y*, *z*) multiply the current matrix by a rotation matrix
 - *angle* : angle of rotation, **in degrees**
 - -x, y, z : x, y, z coord. value of rotation axis vector

- Calling glRotate*(*angle*, *x*, *y*, *z*) will update the current matrix as follows:
- $C \leftarrow CR$ (right-multiplication by R)

R is a rotation matrix

[Practice] glRotate*()

```
def render():
    # ...
    # edit here
    glColor3ub(255, 255, 255)
    # 1) & 2) all draw a triangle with the same transformation
    # (rotate 60 deg about x axis) - p'= CRp
    # (C: current transformation matrix at this point)
    # 1)
    glRotatef (60, 1, 0, 0)
    drawTriangle()
    # 2)
    # th = np.radians(60)
    \# R = np.identity(4)
    \# R[:3,:3] = [[1.,0.,0.]],
                # [0., np.cos(th), -np.sin(th)],
                # [0., np.sin(th), np.cos(th)]]
    # drawTriangleTransformedBy(R)
```

glTranslate*()

• glTranslate*(*x*, *y*, *z*) - multiply the current matrix by a translation matrix

-x, y, z: x, y, z coord. value of a translation vector

- Calling glTranslate*(*x*, *y*, *z*) will update the current matrix as follows:
- $C \leftarrow CT$ (right-multiplication by T)

$$T = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

[Practice] glTranslate*()

```
def render():
    # ...
    # edit here
    glColor3ub(255, 255, 255)
    \# 1) & 2) all draw a triangle with the same transformation
    # (translate by [.4, 0, .2]) - p' = CTp
    # (C: current transformation matrix at this point)
    # 1)
    qlTranslatef(.4, 0, .2)
    drawTriangle()
    # 2)
    \# T = np.identity(4)
    \# T[:3,3] = [.4, 0., .2]
    # drawTriangleTransformedBy(T)
```

glMultMatrix*()

- glMultiMatrix*(*m*) multiply the current transformation matrix with the matrix *m*
 - *m* : 4x4 **column-major** matrix
 - Note that a np.ndarray object stores data in **row-major** order
 - You have to pass the transpose of np.ndarray to glMultMatrix()

If this is the memory layout of a stored 4x4 matrix:

m[0]	m[1]	m[2]	m[3]	m[4]	m[5]	m[6]	m[7]	m[8]	m[9]	m[10]	m[11]	m[12]	m[13]	m[14]	m[15]
	$\begin{bmatrix} m[\\m[\\m[\\m[\\m[]]$	0] n 1] n 2] n 3] n	n[4] n[5] n[6] n[7]	m[8] m[9] m[10] m[11]	6] n 0] n 0] n 1] n	n[12] n[13] n[14] n[15]		m m	n[0] n[4] n[8] [12]	-	[] { 5] { 0] r 3] r	m[2] m[6] m[10] n[14]		[3] [7] [11] [15]	
Column-major							Row-major								

glMultMatrix*()

• Calling glMultMatrix*(M) will update the current matrix as follows:

• $C \leftarrow CM$ (right-multiplication by M)

[Practice] glMultMatrix*()

```
def render():
    # ...
    # edit here
    # rotate 30 deg about x axis
    th = np.radians(30)
    R = np.identity(4)
    R[:3,:3] = [[1.,0.,0.]],
                [0., np.cos(th), -np.sin(th)],
                 [0., np.sin(th), np.cos(th)]]
    # translate by (.4, 0., .2)
    T = np.identity(4)
    T[:3,3] = [.4, 0., .2]
    glColor3ub(255, 255, 255)
    \# 1) & 2) & 3) all draw a triangle with the same
transformation - p`=CRTp
    # (C: current transformation matrix at this
moment)
    # 1)
    glMultMatrixf(R.T)
    glMultMatrixf(T.T)
    drawTriangle()
```

```
# 2)
# glMultMatrixf((R@T).T)
# drawTriangle()
# 3)
# drawTriangleTransformedBy(R@T)
```

Composing Transformations using OpenGL Functions

• Let's say the current matrix is the identity **I**

```
glTranslatef(x, y, z) # T
glRotatef(angle, x, y, z) # R
drawTriangle() # p
```

```
will update the
```

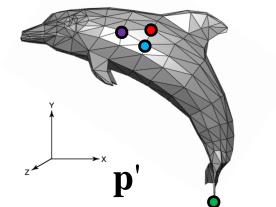
current matrix to **TR**

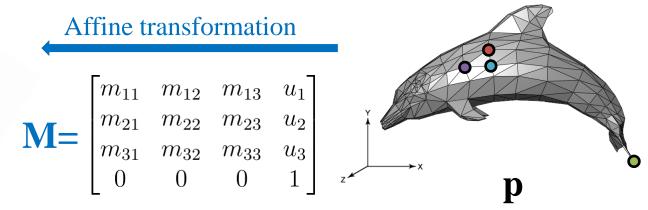
- A vertex p of the triangle will be drawn at TRp (p'=TRp)
- \rightarrow **p** is first rotated by **R**, then translated by **T**.

Quiz #2

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Fundamental Idea of Transformation

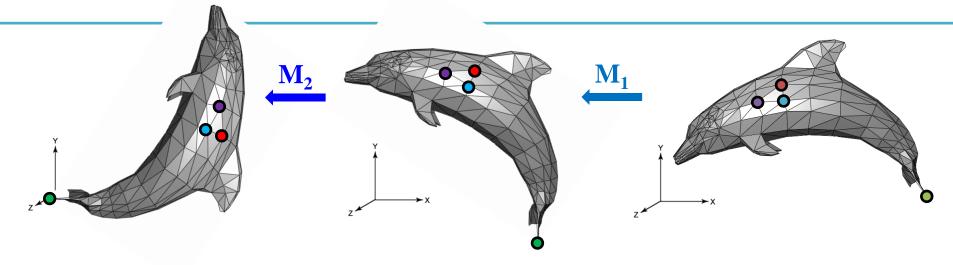




Fundamental idea	Implementation 1: Using numpy matrix multiplication	Implementation 2: Using OpenGL transformation functions
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	glVertex3fv(Mp ₁) glVertex3fv(Mp ₂) glVertex3fv(Mp ₃) glVertex3fv(Mp _N) (slicing is omitted)	<pre>glMultMatrixf(M) (M.T for numpy array) glVertex3fv(p1) glVertex3fv(p2) glVertex3fv(p3) glVertex3fv(pN) (or you can use glScalef(x,y,z),</pre>
		glRotatef(ang,x,y,z), glTranslatef(x,y,z))
An array that stores all vertex data. This enables very fast drawing. (We'll cover it later)		

Fundamental idea	Implementation 1: Using numpy matrix multiplication	Implementation 2: Using OpenGL transformation functions
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	glVertex3fv(Mp ₁) glVertex3fv(Mp ₂) glVertex3fv(Mp ₃) glVertex3fv(Mp _N) (slicing is omitted)	<pre>glMultMatrixf(M) (M.T for numpy array) glVertex3fv(p1) glVertex3fv(p2) glVertex3fv(p3) glVertex3fv(pN) (or you can use glScalef(x,y,z), glRotatef(ang,x,y,z), glTranslatef(x,y,z))</pre>
An array that stores all vertex data. This enables very fast	• Performance drawback: CPU performs all matrix multiplications	• Faster than the left method because GPU performs matrix multiplications
drawing. (We'll cover it later)	 (Actually, calling a large number of glVertex3f() is not applicable to serious OpenGL programs. Instead they use <i>vertex array.</i>) 	

Fundamental Idea of Transformation



Fundamental idea	Implementation 1: Using numpy matrix multiplication	Implementation 2: Using OpenGL transformation functions
$\mathbf{p}_{1}' \leftarrow \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}_{1}$ $\mathbf{p}_{2}' \leftarrow \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}_{2}$ $\mathbf{p}_{3}' \leftarrow \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}_{3}$ $\cdot \qquad \cdot \qquad$	glVertex3fv($M_2M_1p_1$) glVertex3fv($M_2M_1p_2$) glVertex3fv($M_2M_1p_3$)	$glMultMatrixf(M_{2})$ $glMultMatrixf(M_{1})$ or $glMultMatrixf(M_{2}M_{1})$ $glVertex3fv(p_{1})$ $glVertex3fv(p_{2})$ $glVertex3fv(p_{3})$
$\mathbf{p}_{\mathrm{N}}' \leftarrow \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}_{\mathrm{N}}$	glVertex3fv(M ₂ M ₁ p _N) (slicing is omitted)	glVertex3fv(p _N) (or you can use combination of glScalef(x,y,z), glRotatef(ang,x,y,z), glTranslatef(x,y,z))

Fundamental Idea is Most Important!

 If you see the term "transformation", what you have to think of is:

• Not this one:

glScalef(x, y, x)
glRotatef(angle, x, y, z)
glTranslatef(x, y, z)

Fundamental Idea is Most Important!

- glScalef(), glRotatef(), glTranslatef() are only in legacy OpenGL, not in DirectX, Unity, Unreal, modern OpenGL, ...
- For example, in modern OpenGL, one have to directly multiply a transformation matrix to a vertex position in *vertex shader*.
 - Very similar to our first method using numpy matrix multiplication
- That's why I started the transformation lectures with numpy matrix multiplication, not OpenGL transform functions.
 - The fundamental idea is the most important!
- But in this class, you have to know how to use these gl transformation functions anyway.
 - They provide much faster computation.

Affine Space & Coordinate-Free Concepts

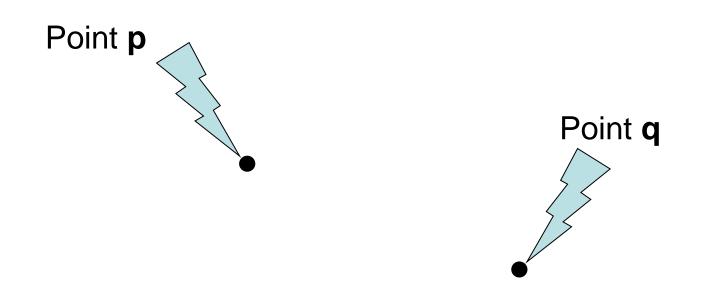
Coordinate-invariant (Coordinate-free)

• Traditionally, computer graphics packages are implemented using *homogeneous coordinates*.

• We will see *affine space* and *coordinate-invariant geometric programming* concepts and their relationship with the homogeneous coordinates.

• Because of historical reasons, it has been called *"coordinate-free"* geometric programming.

Points



• What is the "sum" of these two "points" ?

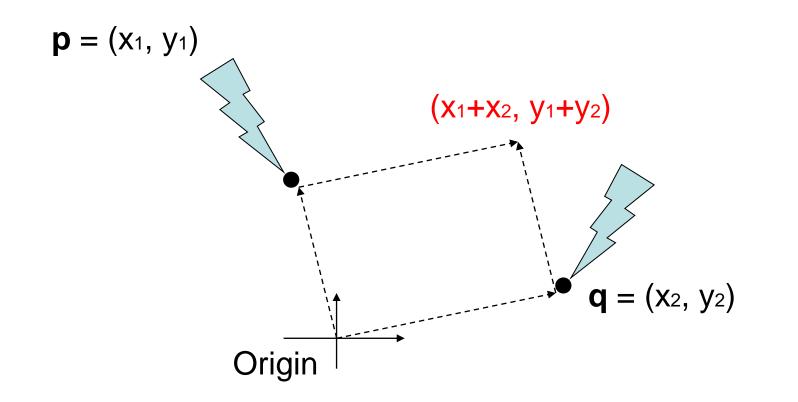
If you assume coordinates, ...

$$p = (x_1, y_1)$$

 $q = (x_2, y_2)$

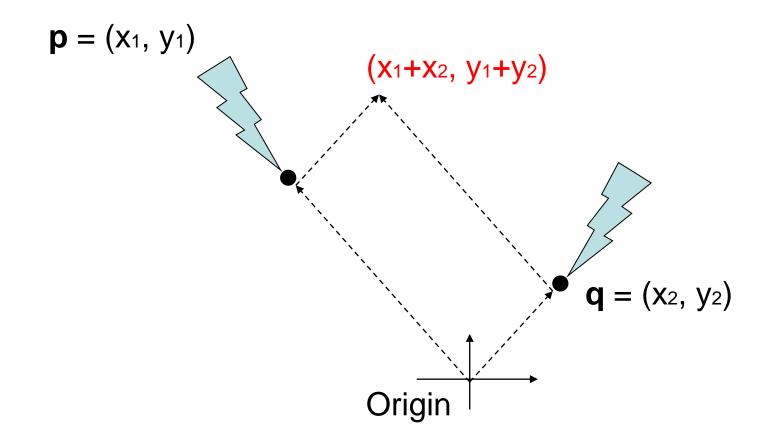
- The sum is (x₁+x₂, y₁+y₂)
 - Is it correct ?
 - Is it geometrically meaningful ?

If you assume coordinates, ...



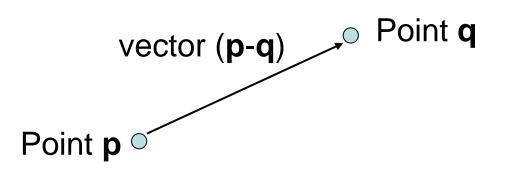
- Vector sum
 - (x₁, y₁) and (x₂, y₂) are considered as vectors from the origin to p and q, respectively.

If you select a different origin, ...



If you choose a different coordinate frame, you will get a different result

Points and Vectors



- A *point* is a position specified with coordinate values.
- A vector is specified as the difference between two points.
- If an origin is specified, then a point can be represented by a vector from the origin.
- But, a point is still not a vector in *coordinate-free* concepts.

Points & Vectors are Different!

- Mathematically (and physically),
- *Points* are **locations in space**.
- Vectors are displacements in space.

- An analogy with time:
- *Times* (or datetimes) are **locations in time**.
- *Durations* are **displacements in time**.

Vector and Affine Spaces

Vector space

- Includes vectors and related operations
- No points

Affine space

- Superset of vector space
- Includes vectors, points, and related operations

Vector spaces

- A vector space consists of
 - Set of vectors, together with
 - Two operations: addition of vectors and multiplication of vectors by scalar numbers
- A *linear combination* of vectors is also a vector

 $\mathbf{u}_0, \mathbf{u}_1, \cdots, \mathbf{u}_N \in V \implies c_0 \mathbf{u}_0 + c_1 \mathbf{u}_1 + \cdots + c_N \mathbf{u}_N \in V$

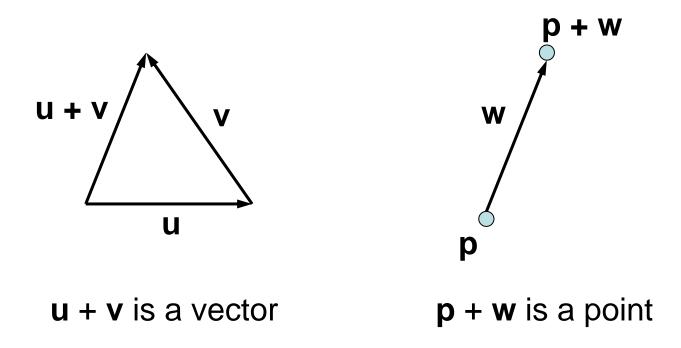
Affine Spaces

- An *affine space* consists of
 - Set of points, an associated vector space, and
 - Two operations: the difference between two points and the addition of a vector to a point

Coordinate-Free Geometric Operations

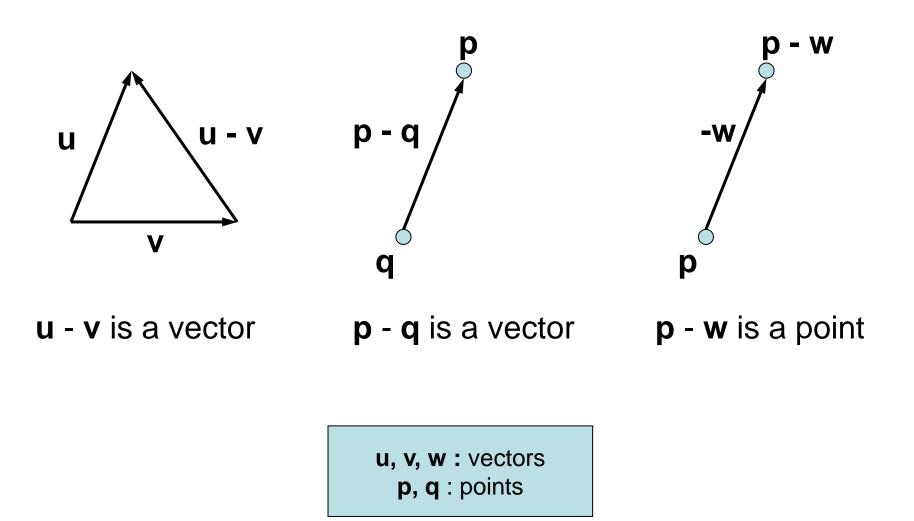
- Addition
- Subtraction
- Scalar multiplication

Addition



u, v, w : vectors p, q : points

Subtraction



Scalar Multiplication

scalar • vector = vector

- 1 point = point
- $0 \cdot point = vector$
- $c \cdot point = (undefined)$ if $(c \neq 0, 1)$

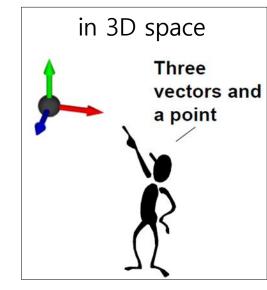
Affine Frame

- A *frame* is defined as a set of vectors {v_i | i=1, ..., N} and a point o
 - Set of vectors {v_i} are bases of the associate vector space
 - o is an origin of the frame
 - -N is the dimension of the affine space
 - Any point **p** can be written as

$$\mathbf{p} = \mathbf{0} + c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_N \mathbf{v}_N$$

- Any vector v can be written as

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_N \mathbf{v}_N$$



Summary

• In an affine space,

point + point = undefined point - point = vector point \pm vector = point vector \pm vector = vector scalar • vector = vector scalar • point = point = vector = undefined

iff scalar = 1 iff scalar = 0 otherwise

Points & Vectors in Homogeneous Coordinates

- In 3D spaces,
- A **point** is represented: (x, y, z, **1**)
- A vector can be represented: (x, y, z, **0**)

 $(x_{1}, y_{1}, z_{1}, 1) + (x_{2}, y_{2}, z_{2}, 1) = (x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}, 2)$ point point undefined $(x_{1}, y_{1}, z_{1}, 1) - (x_{2}, y_{2}, z_{2}, 1) = (x_{1}-x_{2}, y_{1}-y_{2}, z_{1}-z_{2}, 0)$ point point vector $(x_{1}, y_{1}, z_{1}, 1) + (x_{2}, y_{2}, z_{2}, 0) = (x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}, 1)$ point vector point

A Consistent Model

- Behavior of affine frame coordinates is completely consistent with our intuition
 - Subtracting two points yields a vector
 - Adding a vector to a point produces a point
 - If you multiply a vector by a scalar you still get a vector
 - Scaling points gives a nonsense 4th coordinate element in most cases

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ 1 \end{bmatrix} - \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ 1 \end{bmatrix} = \begin{bmatrix} a_{1} - b_{1} \\ a_{2} - b_{2} \\ a_{3} - b_{3} \\ 0 \end{bmatrix} \qquad \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ 1 \end{bmatrix} + \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1} + v_{1} \\ a_{2} + v_{2} \\ a_{3} + v_{3} \\ 1 \end{bmatrix}$$

Points & Vectors in Homogeneous Coordinates

• Multiplying affine transformation matrix to a point and a vector:

$$\begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{bmatrix} \begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ \mathbf{0} \end{bmatrix}$$
point \longrightarrow point vector vector

• Note that translation is not applied to a vector!

Quiz #3

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Next Time

- Lab for this lecture (next Monday):
 - Lab assignment 4

- Next lecture:
 - 5 Rendering Pipeline, Viewing & Projection 1

- Acknowledgement: Some materials come from the lecture slides of
 - Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, <u>http://15462.courses.cs.cmu.edu/fall2015/</u>
 - Prof. Jehee Lee, SNU, <u>http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html</u>
 - Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/